He hows fout one esquisse de la courbe
$$y = \sqrt{2x-1}$$

(xiy) est sur la courbe ssi

(xiy) $y = 2x - 1 \iff x = \frac{1}{2}y^2 + \frac{1}{2}$

(2) $y > 0$

M(xid) $y = \sqrt{2x-1}$

PM

(3;0)

Soft $M(x_{i,j})$ sur $y = \sqrt{2x-1}$. La distance de P d' M est donnée par la norme du certeur PM: $||PM|| = ||(X-3)|| = |(X-3)^2 + y^2|$ Vu gue $2^2 < 6^2 \Leftrightarrow 2 < 6 \Leftrightarrow 4,6 > 0$, on peut chercher le minimum de la distance au corré: 11 PM 11 = (X-3) 2 4 y 2 Vu que M est sur $y = \sqrt{2x-1}$, ou peut écrite: $y^2 = 2x-1$

Ansi,
$$\|PM\|^2 = d(x) = (x-3)^2 + 2x-1$$

$$d(x) = x^2 - 6x + 9 + 2x - 1$$

$$= x^2 - 4x + 8$$
Etadions le croisson que de d:
$$d'(x) = 2x - 4$$

$$d'(x) = 0 \iff x = 2$$

$$min(2; 4)$$
Le corré de le distance est
$$min'mal pour x = 2 \text{ et atte distance}$$

$$tout 2.$$
Le point cherché est $M(2; V3)$