On commence por resondre fix
$$j = 0$$

pour $x \in [0, \pi/2]$
 $as(3x) = 0 \iff 3x = \frac{\pi}{2} + k2\pi$

on

 $3x = -\frac{\pi}{2} + k2\pi$
 $x = \frac{\pi}{6} + k \cdot \frac{2\pi}{3}$

on

 $x = -\frac{\pi}{6} + k \cdot \frac{2\pi}{3}$

Les trois zeros sont donc $\frac{\pi}{6}$ at $\frac{\pi}{2}$ pour $x \in [0, \pi/2]$

L'are cherchée se slade donc comme Suit: $\int_{0}^{\pi} u_{5}(3x) dx + \int_{0}^{\pi} u_{5}(3x) dx = 0$ $\frac{1}{3}\sin(3x)$ | $\frac{1}{3}\sin(3x)$ | $\frac{1}{4}$ = $\frac{1}{3} \sin \frac{\pi}{2} - \frac{1}{3} \sin 0 + \left| \frac{1}{3} \sin \frac{3\pi}{2} - \frac{1}{3} \sin \frac{\pi}{2} \right| =$ $\frac{1}{3} + \left| -\frac{1}{3} - \frac{1}{3} \right| = \frac{3}{3} = 1$